Infinite metacyclic groups and their non-abelian tensor squares
نویسندگان
چکیده
منابع مشابه
non-divisibility for abelian groups
Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The proper...
متن کاملThe non-abelian tensor product of normal crossed submodules of groups
In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...
متن کاملHilbert Functions of Finite Group Orbits: Abelian and Metacyclic Groups
This thesis is concerned with Hilbert functions of ideals of finite group orbits, focusing in particular on abelian and metacyclic groups. Conjecture 16 in Section 4 characterizes the Hilbert functions that arise from two-dimensional representations of certain abelian groups, and a proof of the necessity of its conditions is provided. In Section 6, Proposition 18 gives a bound for the Hilbert f...
متن کاملNon-Abelian Sequenceable Groups Involving ?-Covers
A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...
متن کاملFiniteness of a Non Abelian Tensor Product of Groups
Some su cient conditions for niteness of a generalized non abelian tensor product of groups are established extending Ellis result for compatible actions The non abelian tensor product of groups was introduced by Brown and Loday following works of A Lue and R K Dennis It was de ned for any groups A and B which act on themselves by conjugation y xyx and each of which acts on the other such that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 2000
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500021258